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Motivation

Short-distance constraints for mixed region: OPE, VVA anomaly Melnikov, Vainshtein 2004

Mapping onto BTT see my talk from Mainz meeting

Longitudinal constraints: Π̂1–3, related to pseudoscalar poles see talk by L. Laub

Transversal constraints: all other Π̂i

Status of the axial vectors a1(1260), f1(1285), f ′1(1420)

Large in MV: a
a1+f1+f ′1
µ

∣

∣

MV
= 22 × 10−11 (used to saturate transversal SDCs)

Jegerlehner 2017: MV model violates Landau–Yang theorem

→֒ introduces antisymmetrization by hand ⇒ a
a1+f1+f ′1
µ

∣

∣

J
= 8 × 10−11

Pauk, Vanderhaeghen 2014: Lagrangian model, a
f1+f ′1
µ

∣

∣

PV
= 6 × 10−11

This talk:

BTT decomposition for axials

Mapping of MV model onto BTT

→֒ clarify Landau–Yang, explain why MV number is so large
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Axial vectors: matrix element

Decomposition of A → γ∗γ∗ amplitude

〈γ∗(q1, λ1)γ
∗(q2, λ2)|A(p, λA)〉 = i(2π)4δ(4)(q1 + q2 − p)e2ǫ

λ1∗
µ ǫ

λ2∗
ν ǫ

λA
α Mµνα(q1, q2)

Mµνα(q1, q2) =
i

m2
A

3
∑

i=1

T
µνα
i

Fi (q
2
1 , q

2
2)

→֒ three form factors Fi(q
2
1 , q

2
2)

Lorentz structures from BTT recipe

T
µνα
1

= ǫµνβγq1βq2γ(q
α
1 − qα

2 )

T
µνα
2

= ǫανβγq1βq2γq
µ
1
+ ǫαµνβq2βq2

1

T
µνα
3

= ǫαµβγq1βq2γqν
2 + ǫαµνβq1βq2

2

Crossing properties

C12

[

T
µνα
1

]

= −T
µνα
1

C12

[

T
µνα
2

]

= −T
µνα
3

F1(q
2
1 , q2

2) = −F1(q
2
2 , q

2
1) F2(q

2
1 , q2

2) = −F3(q
2
2 , q

2
1)

F1(0, 0) = 0 F2(0, 0) = −F3(0, 0)
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Axial vectors: phenomenology

Landau–Yang in action:

H++(q
2
1 , q

2
2) =

λ(m2
A, q2

1 , q2
2)

2m3
A

F1(q
2
1 , q

2
2 ) −

q2
1(m

2
A − q2

1 + q2
2 )

2m3
A

F2(q
2
1 , q

2
2) −

q2
2 (m

2
A + q2

1 − q2
2)

2m3
A

F3(q
2
1 , q

2
2 )

→ 0 for q
2
1 , q

2
2 → 0

Equivalent two-photon photon width

Γ̃γγ = lim
q2

1
→0

m2
A

q2
1

1

2
Γ(A → γ∗

L γT ) =
πα2mA

12

∣

∣F2(0, 0)
∣

∣

2

Experimental input from e+e−
→ e+e−f1(

′) L3 2002, 2007

Γ̃γγ (f1) = 3.5(8) keV Γ̃γγ (f
′

1)BR(f ′1 → KKπ) = 3.2(9) keV

ΛD(f1) = 1.04(8)GeV ΛD(f
′

1) = 0.93(8)GeV

assuming Schuler et al. 1998

F2(−Q2, 0)

F2(0, 0)
=

(

1 +
Q2

Λ2
D

)

−2

F1(−Q2, 0) = 0
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Axial vectors: mixing and SU(3)

Mixing of f1 and f ′1




f1

f ′1



 =





cos θA sin θA

− sin θA cos θA









f 0
1

f 8
1





Mixing angle

Γ̃γγ (f1)

Γ̃γγ (f ′1)
=

mf1

mf ′
1

cot2(θA − θ0) θ0 = arcsin
1

3
θA = 62(5)◦

Assume SU(3) symmetry for axial nonet φ

Tr(Q2φ) =
1

9

(

3a1 + 2
√

6f 0
1 +

√
3f 8

1

)

Γ̃γγ (a1) =
Γ̃γγ (f1)

3 cos2(θA − θ0)

ma1

mf1

=
Γ̃γγ (f ′1)

3 sin2(θA − θ0)

ma1

mf ′
1

= 2.1 keV
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BTT projection of MV constraints

MV constraint for q2
3 ≪ q2

1 ∼ q2
2 , q̂ = (q1 − q2)/2

Π̂1 = 2wL(q
2
3)f (q̂

2)

Π̂5 = Π̂6 = wT (q
2
3 )f (q̂

2)

Π̂10 = Π̂14 = −Π̂17 = −Π̂39 = −Π̂50 = −Π̂51 =
1

q1 · q2

wT (q
2
3)f (q̂

2)

Π̂i = 0 i ∈ {2, 3, 4, 7, 8, 9, 11, 13, 16, 54}

where

f (q̂2) = − 1

2π2q̂2

∑

a=0,3,8

C2
a = − 1

18π2q̂2
C3 =

1

6
C8 =

1

6
√

3
C0 =

2

3
√

6

Non-renormalization theorems and anomaly condition in chiral limit
Vainshtein 2003, Czarnecki et al. 2003, Knecht et al. 2004, . . .

wL(q
2) = 2wT (q

2) =
6

q2

Transversal relation receives non-perturbative corrections
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Matching onto MV model

Saturate transversal constraint from axial exchange, drop longitudinal amplitudes

8

q̂2

∑

a=0,3,8

C2
a wT (q

2
3 ) =

∑

A=a1,f1,f
′

1

1

m4
A

q̂2

q2
3
− m2

A

φA(q
2
1 , q

2
2)FA

2 (q2
3 , 0)

φA(q
2
1 , q2

2) = FA
2 (q2

1 , q
2
2) + FA

2 (q2
2 , q

2
1) = 2FA

2 (0, 0)
Λ4

A

(Λ2
A
− q2

1
)(Λ2

A
− q2

2
)

Conclusions

F2(q
2
1 , q

2
2) = −F3(q

2
2 , q

2
1), but φ(q2

1 , q
2
2) indeed symmetric

→֒ additional antisymmetrization in Jegerlehner 2017 incorrect

Scaling matches for φ(q2
1 , q

2
2) ∼ 1/q̂4 and F2(q

2
3 , 0) → F2(0, 0)

1 = 9
∑

a=0,3,8

C2
a

?
= 9

∑

A=a1,f1,f
′

1

Γ̃γγ (A)

πα2mA

(

ΛA

mA

)4
ΛA=0.77 GeV

= 0.04

→֒ axial vectors with VMD not enough to saturate constraint, need ΛA ∼ 1.7 GeV
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Consequences

Original MV estimates for different mixing scenarios

aideal
µ |MV = (5.7 + 15.6 + 0.8)× 10−11 = 22 × 10−11

a
octet/singlet
µ |MV = (5.7 + 1.9 + 9.7)× 10−11 = 17 × 10−11

Comparison in BTT

Model only well defined in OPE limit, need to pick kinematics in Π̂4–6

→֒ key difference to pseudoscalar poles, which are already the proper residues

Axial propagators modified to enforce wL(q
2) = 2wT (q

2) at O(1/q4)

→֒ depends on mixing scheme not only for axials, but also for pseudoscalars

For VMD find similar numbers as MV

Increasing the VMD scale to correct Γ̃γγ decreases aaxials
µ by about a factor 3
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Conclusions

MV model does not violate the Landau–Yang theorem, the critical combination

of axial form factors is indeed symmetric

MV model implies significantly too large two-photon widths Γ̃γγ

Changing the VMD scale in the model to fix the widths decreases aaxials
µ

All existing estimates for axial vectors are based on Lagrangian assumptions

→֒ need to isolate the residues and study the sum rules

Transversal OPE constraint will be helpful for the mixed regions, just as the

longitudinal one for the pseudoscalars
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Outlook: matching to the quark loop

1 1.5 2 2.5 3
0

5
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Qmin [GeV]

a
µ
×
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1
1

Λ = ∞

Λ = 1.35 GeV
Λ = 1 GeV Red: longitudinal Π̂1–3, blue: transversal,

black: all

Integration region

θ(Q1 − Qmin)θ(Q2 − Qmin)θ(Q3 − Qmin)

+ θ(Q1 − Qmin)θ(Q2 − Qmin)θ(Qmin − Q3)
Q2

3

Q2
3
+ Λ2

+ crossed

Regge implementation of longitudinal SDCs see talk by L. Laub

∆a
η
µ +∆a

η′

µ

∆aπ0
µ

∼
C2

0 + C2
8

C2
3

= 3 aLSDC
µ =

∑

P=π0,η,η′

∆aP
µ ∼ 12 × 10−11

Naive matching to the quark loop for scale Λ ∼ Qmin ∼ 1.35 GeV

→֒ would imply transversal SDCs aTSDC
µ ∼ 4 × 10−11

But: axials resonances close to this scale
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Encore: the charm loop

Perturbative QCD quark loops with PDG masses

ac-loop
µ = 3.1 × 10−11 ab-loop

µ = 2 × 10−13 at-loop
µ = 2 × 10−15

→֒ charm loop borderline relevant

What about non-perturbative effects?

Lowest-lying cc̄ resonance: the ηc(1S)

mηc (1S) = 2.9839(5)GeV Γ(ηc(1S) → γγ) = 5.0(4) keV

Should couple to J/Ψ, since BR(J/Ψ → ηc(1S)γ) = 1.7(4)% significant

VMD with Λ = mJ/Ψ gives see talk by P. Roig at Mainz meeting

a
ηc (1S)
µ = 0.8 × 10−11

To avoid double counting take this as the error estimate

ac-quark
µ = 3(1)× 10−11
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